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ABSTRACT

The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly

classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately

compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained

if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In

this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement

algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm

that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances

apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types

of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of

multi-spectral images and thus provides better within-class variations than would otherwise be obtained without

the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that

without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas

multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on

the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained

by the interaction between different agronomic treatments applied to the regions: the preprocessed images are

closer to ground truth. The principle aclvantage that the retinex offers is that for different lighting conditions

classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent,

whereas classifications derived from the original images, without preprocessing, are much less similar.

Keywords: image classification, image enhancement, multi-spectral, retinex, dynamic range compression

I. INTRODUCTION

The analysisof remote sensed imagery obtained over agriculturalregionscan be used forthe detectionand dis-

criminationof "stressed"and "non-stressed"vegetation;thisisan issueofconsiderableimportance tothe agriculture

industry. The terms "stressed"and "non-stressed"are used in a qualitativesense to designatethe relativeplant

growth over differentregionsof a field.The differencesin growth patterns can be due to severalfactorsincluding

differentagronomic treatments. Various algorithmsforthe discriminationand detectionof vegetationusing remote

sensed imagery existin the literature.One way to characterizethese algorithms isby the characteristicsof the

multi-dimensionalspace in which they operate. For example, many users of remote sensed imagery use spectral

signaturesto characterizeand identifymaterialsin multi-dimensional"spectral"space. The spectralsignatureofa

materialcan be definedinthe solar-refiectivespectralregionby itsreflectanceas a functionofwavelength,measured

at an appropriatespectralresolution.In other spectralregions,signaturesofinterestare temperature and emissivity

(Thermal InfraredTIR) and surfaceroughness (radar).I

There are fundamental problems with the spectralsignatureapproach that are welldocumented inthe literature.

First,allspectralsignaturesare unique to the sample and the environment in which they are obtained. Second,

the abilityto distinguishspectralsignaturesisoftencomplicated by naturalvariabilityfora givenmaterial,spectral

quantizationof many remote-sensingsystems, and modificationof signaturesby the atmosphere as a resultof the

image formation process,l Therefore,even though one may wish to apply different"labels"todifferentiatevegetation
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Figure 1. System Model

signatures, there is no guarantee that the signatures obtained by the remote sensing system will exhibit measurably

different, or even recognizable, signatures.

In recent years, a considerable amount of ground-based (laboratory) data have been accumulated that describe

spectral reflectance characteristics of soils and vegetation, without the problem of atmospheric complications. It is

difficult, however, to duplicate natural reflectance measurements under laboratory conditions. The comparison be-

tween natural reflectance signatures and laboratory produced signatures, therefore, becomes even more complicated.

Fhrthermore, the spectral signature of vegetation also changes over the seasonal life cycle of many plants, acquiring

a "yellow" characteristic in senescence," with a corresponding increase in the red region reflectance caused by a loss

of photosynthetic chlorophyll}

As an alternative to classification based on spectral signatures, multi-dimensional spectral space is transformed

into a "feature" space prior to classification. In this way, information in the image is redistributed into a different

and, depending on the application, more useful form. For example, transformations such as multi-spectral ratios of

Near Infrared (NIR) to visible bands have been used to enhance reflectance differences between soils and vegetation

and form "vegetation indices" that aid in classification. In this way, soil and other geological formations will exhibit

similar ratios near 1, while vegetation will show a relatively larger ratio of 4 or more. Other common vegetation

indices are the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed

Vegetation Index (TVI), and the Perpendicular Vegetation Index (PVI). 1 The success of using these indices in the

past has been affected by relatively few acquisition dates during a growing season, the paucity of ground truth data at

the time of acquisition, and the lack of suitable methods to account for atmospheric effects on the radiance measured

by the remote sensing device}

Whether a particular classification algorithm uses spectral signatures or multi-spectral ratio indices to facilitate
discrimination and detection of vegetation changes in an agricultural region, either technique requires good radio-

metric calibration of the image before analysis can be performed. Figure 1 illustrates the major steps in the image

classification process. Radiometric calibration, a fundamental stage in this process, generally involves (1) sensor

calibration: at-sensor radiance values obtained from quantized data during A/D conversion, (2) atmospheric correc-

tion: surface radiance values obtained from at-sensor radiance, and (3) solar and topographic correction: surface

reflectance values obtained from surface radiance. Usually, detailed information about atmospheric conditions is

not available for a given data set. However, parametric atmospheric correction methods can generally be used to

compensate for atmospheric conditions. The success of multi-image classification in the analysis stage is based on

the quality of these methods.

In this paper, we approach multi-image classification differently. Instead of using band ratios or absolute spectral

signatures, we use "relative" signatures in the image to discriminate and detect vegetation changes. We compen-
sate for the atmospheric effects on the multi-spectral images by applying the multi-scale retinex 3 (MSR) image

enhancement algorithm to the multi-image, prior to image classification.

2. AGRONOMIC DATA

For our analysis we used remote sensed images of a cotton field in Texas acquired in the summer of 1997. We chose

two multi-spectral images of the field taken on consecutive dates. The first image (acquired 08/14/97) has overcast

*Senescense is the physiological death of plants.



Figure 2. Test site captured on 08/14/97. The area of interest is highlighted within the rectangle.

sky, i.e. diffuse light, and the second (acquired 08/15/97) has almost clear sky, i.e. direct sunlight. The highlighted

sub-image in Figure 2 is the area of interest for this experiment. We label the images of this area TXoa for date

08/14/97 and TXob for date 08/15/97. The cotton field was the site of a controlled experiment to study the effects

on vegetation growth of different combinations of water and nitrogen treatment levels for a particular soil tillage

type. t In all, 4 water treatment levels, 5 nitrogen treatment levels, and 2 soil tillage types were used. Figure 3 shows

a schematic of the treatment experiments applied to the TXoa and TXob regions.

The field was divided into 120 blocks representing 4.5.2 = 40 unique combinations of water, nitrogen, and tillage

type. Each combination was repeated 3 times over the whole field. The 4 irrigation levels used were: 0.00, 0.25, 0.50

and 0.75 (fraction) of potential evapotranspiration (PET) _. The 5 fertilizer nitrogen application levels were: 0, 20,

40, 60 and 80 lbs/acre Best Practice (BP)§.

In theory, each of these 40 unique blocks represents a different "spectral class" and there are three samples of

each class. However, classification results show that the number of actual spectral classes is fewer than 40. Moreover,

the blocks are generally not homogeneous. That is, within each block there are mixed areas where the levels of water

and/or nitrogen treatment are not uniform. In addition, the ground truth data was reliable for water treatment, but

tTillage prepares the soil for growing crops. This preparation is traditionally accomplished by using a plow to cut and mix the soil.

SEvapotranspiration (ET) is a measurement of the total amount of water needed to grow plants and crops. Since there are thousands

of cultivated plants, the potential ET (PET) is a standard ET rate for general reference and use. The water requirements of specific
crops and turf grasses can be calculated as a fraction of the PET. This '_fraction" is called the crop coefficient (Kc) or turf coefficient

(Tc) 4
§Best Management Practices are farming practices that are designed to reduce nutrient contamination of surface and ground water.

These practices are based on research results and field experiments and maybe as simple as following fertilizer recommendations and
irrigation scheduling, a
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Figure 3. Agronomic treatments applied to the area of interest in Figure 2.

not for nitrogen treatment. The four-band multi-spectral images were acquired from an aircraft platform with an

approximate nadir view, and calibrated to reflectance. The aircraft multi-spectral sensor band centers were at 486,

560, 685, and 840 am.

3. IMAGE PREPROCESSING

3.1. The Multi-scale Retinex

For all (x, y) pixels in the multi-spectral image G, the multi-scale retinex (MSR) _'_ can be compactly written as

N

Fj (x, y) = E Wn " {logiGj (x, y)] - log[Gj (x, y) * Hn (x, y)] } (1)
n_-- 1

where the subscript j represents the spectral bands, N is the number of spatial scales being used, and Wn are the

weighting factors for the scales, s'9'3 The Hn(x, y) are the surround functions (convolution kernels) given by

g,(x,y) = In exp[-(x 2 + y2)la_], (2)

where the an are spatial scale parameters that control the extent of the surround function. Smaller values of an

provide more dynamic range compression, and larger values provide more lightness/color constancy. The In are

selected so that _ _ Hn(x,y) = 1. Each of the expressions within the summation represents a single-scale retinex

(SSR).

The MSR combines the dynamic range compression ofthe small scaleretinexwith the tonalrenditionofthe large

scaleretinexto produce an output which encompasses both. Two fundamental issuesin the applicationofthe MSR

are the following:

I°

.

The MSR reduces dependency on lighting conditions/geometry caused by such conditions as obscured fore-
grounds, and poor lighting caused by defects in illumination due to atmospheric conditions or artificial illumi-
nants.

As atmospheric conditions change, the MSR will produce results such that the restored image f in Figure 1

will look as much like the original scene s as possible, before image acquisition/digitization.
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4. DISCUSSION

There were two primary motivations for this study: (a) to what extent can a conventional unsupervised classification

algorithm yield "good" results when applied to the original images "as is" (i.e., with no preprocessing); and (b) if
the multi-spectral images are preprocessed with the retinex algorithm and then the same conventional unsupervised

classification algorithm applied, to what extent does that retinex processing influence the "goodness" of the result?

This section summarizes the results of our initial experiments.

4.1. MSR Pre-classification Processing

The MSR was used to preprocess the multi-spectral image before it was used for classification. Figure 5 shows the

results of the MSR algorithm applied to band 3 (685 urn) of the image in Figure 2. The left column shows the

original images: TXoa and TXob, for the cloudy and clear day. The right column shows the MSR processed images:
TXra and TXrb. In TXoa the band reflectance is uniformly very dark, because of the cloud cover on that day. The

low contrast in this image creates a problem in obtaining spectral signatures that adequately discriminate agronomic

variables. After the image is processed with the MSR, subtle patterns emerged that were not visible in the TXoa

image. Specifically, the patterns represent the boundaries between the 20 different nitrogen and water treatment

regions. The MSR also improved the TXob image, obtained on the clear day. One of the primary results from the

application of the MSR is that the processed images, TXra and TXrb, are more "similar" to each other in brightness,

contrast and detail than the original images, TXoa and TXob.

The MSR processed images display far more visual information than is evident in the unprocessed images. Even

though radiometric calibration is not preserved by the MSR, we conclude that it can be used as an auxiliary tool for

the visualization of spatial patterns in dark regions, as is demonstrated herein. Visual information in darker regions

that may not be detected with linear representations which preserve radiometry will "pop out" with a clarity limited

only to the dynamic range of the sensor and any intervening digitalization scheme used prior to the MSR. For this

experiment, we have not yet conducted extensive performance comparison of the MSR with other image enhancement

algorithms such as histogram equalization, gamma correction, and point logarithmic nonlinearity. However, we expect

to find that those image enhancement algorithms are not appropriate for use in preprocessing multi-spectral images

for remote sensing applications where atmospheric conditions are the major contributor to data inaccuracy.

4.2. Multi-image Classification

The literature is rich with both supervised and unsupervised methods for classifying remote sensed multi-spectral

images. These methods include spatial/spectral discriminant functions, e.g., the Maximum Likelihood, and spectral

specific methods, e.g., linear mixing models that require some a priori knowledge such as ground truth maps or

ground samples. Whereas, supervised classification requires training sets to teach the classifier to recognize certain

specific features in the image, unsupervised methods require little or no training data and attempt to discover the

underlying patterns in multi-dimensional space by using techniques such as gradient descent. In this experiment,

we have limited a priori information available about the field being analyzed. The a priori information was used to

verify the accuracy of the classes obtained using unsupervised classification.

We used vector quantization (VQ) to perform unsupervised classification on the multi-spectral image. The only

user specified parameter is the number of classes K. The primary goal was to study and compare the effects of MSR
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Table 1. List of constants used to process the TXoa and TXob images with the MSR

Constant | al if2 (y3 0"4 Gain Offset

Value _ 2 5 20 200 180 0.57

preprocessing on the classification results. The same classification algorithm was applied to both of the original four-

band images TXoa, TXob and both of the MSR four-band images TXra, TXrb. For all four images, we systematically

experimented with K to see how the number of classes affects the overall classification results.

To cluster the images we used VQ along with a splitting method to define the spectral signatures. The method

starts with a one-level quantizer (i.e., the centroid of the entire training set). Next, the one-level quantizer vector

is split into two vectors obtained by perturbing the one-level quantizer. The 2-level quantizer is then applied to the

training set. The two 2-level quantizer vectors are then split into four vectors and a 4-level quantizer is applied to

the training set. The splitting is continued in this manner until K code vectors are generated. This method assumes

that K is a power of two. If K is not a power of two, then in the last step, instead of generating two new code vectors

from each of the code vectors of the quantizer designed previously, we can perturb as many code vectors as necessary
to obtain the desired number of code vectors, l° As in most classification methods, the performance depends on the

quality of the set of spectral means used to discriminate classes in the image. For this analysis, we did not focus on

methods to obtain spectral means, but compared the relative accuracy of the spectral means obtained by the VQ to

signatures derived from the training areas defined by the schematic map of Figure 3.

5. CLASSIFICATION RESULTS

Figures 6 and 7 show the classification results for the original and MSR preprocessed images. To examine the accuracy

of our results we compare these results to the schematic plot of the proposed treatment of water and nitrogen for

the cotton field shown in Figure 3. To facilitate analysis, the figures are annotated with a grid that provides an

approximate separation boundary between each treatment level block.

Our classification results were very encouraging for a number of classes, from as few as K = 4--(i.e., 4 water

treatment levels), to as many as K = 40--(i.e., 4 water treatment levels x 5 nitrogen treatment levels x 2 tillage

types). For the case K = 4, we were interested in determining how well the four water treatment levels could be

discriminated in the image. In the case K = 8, we were interesting in discriminating the four water treatment levels

for each tillage type. From our results we did not see any major differences between the different tillage types in
terms of classification results. That is to say, we could not resolve two different classes of each water treatment type.

The primary effect of the case K = 8 was that we were able to see more clearly the water-nitrogen iterations.

Generally, for all four images we were able to see very clearly the "block" treatment structure that is present.

There are differences in the results, however, depending on whether the lighting was diffuse or direct and depending

on whether or not retinex preprocessing was used. The left column of Figures 6 and 7 show that without MSR

preprocessing the blocks tend to be classified as homogeneous (one class); the right column of Figures 6 and 7 show

that with MSR preprocessing the blocks tend to be classified as more non-homogeneous (multi-class). Comparison

of the classification results for TXoa, TXob (original images) and TXra, TXrb (MSR processed images), show

considerable variation in classes for the unprocessed images as the atmospheric and lighting conditions vary, but

slight or no variations for the MSR processed images.

Because consistent classification results are achieved regardless of the atmospheric conditions, we can argue

empirically that MSR preprocessing tends to produce "spectral signature images". Note that classification consistency

in this experiment is really a measure of the resiliency of the classification process to changes in the process that

affect the formation of the multi-spectral image. In other words, classification consistency is really a measure of how

well we can classify the multi-spectral image given that the atmospheric conditions have changed substantially from

day to day. To illustrate classification consistency, in Table 2 we show the mean spectral reflectance measurements

for the original and MSR preprocessed images for each class. From this table we see that the spectral signatures for

the MSR preprocessed images for each day are more similar than the signatures for the original images.

Initially, we expected to see one different class for each column in the field representing a different water treatment

level and not the multi-class variations that are shown in Figures 6 and 7. However, because the nitrogen and water
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Table 2. Mean spectral reflectance measurements for each class.

-Class _^_ Wavelength (nm) -
-----__ a_ 560 685 840-4a_ _n _o ....

W4 O_

55 49 33 102 140 138 123 161W3

W2

Wl

W4

W3

W2

___W_LWl

58 52 38 93

60 54 41 104

63 58 45 90

08/15/97 direct

115 113 66 201

127 128 83 195

136 138 97 190

148 149 106 190

146 145 139 155

151 148 151 146

158 157 167 144

08/15/97MSR

124 119 92 156

143 140 126 152

146 148 159 149

169 167 173 147

Table 3. Mean spectral reflectance measurements for each column in Plotb of Figure 3.

-'-'--'----'- "-" 0_14/_, 8,_._40 486" 560 685 84008/14/97 diffuse
08_ -------

1 54.83 50.68 33.49 103.65 140.46 141.93 125.12 162.60 W4

2 60.37 54.88 41.54 91.22 154.25 153.09 156.12 145.28 W1

3 56.77 52.15 36.85 94.85 143.66 143.80 134.99 153.09 W3

4 58.29 53.42 39.12 92.49 148.19 147.92 144.54 150.00 W208/15/97 direct
08/15/97 MSR

1 102.07 104.53 61.38 176.28 128.47 127.800 101.82 156.43 W4

2 124.47 126.46 91.42 162.21 157.97 157.38 164.08 146.14 W1

3 112.83 115.05 76.03 165.88 141.24 140.29 130.38 151.37 W3

117.06 120.30 83.67 162.03 147.88 147.31 145.53 149.41 W2

treatment affect the vegetation growth jointly, it would be a mistake to consider the two treatments independently.
For example, the effect of applying water treatment level 4 and nitrogen level 3 may be the same as applying water

treatment level 3 and nitrogen level 5. Therefore the original assumption that there are 40 distinct classes is, of

course, not valid. In further study, we realized that what we are actually discriminating is the change in reflectance

due to different nitrogen effects and water treatment, i.e., joint effects. In Table 2 we see that reflectance generally

increased with water stress for all water levels in the 486, 560, and 685 nm wavelength, but decreased in the (NIR)
840 nm range. This increase in reflectance effect has been reported elsewhere as the effect water stress has on diffusive

resistance and plant metabolism in general.l_ However, the increase was affected by the nitrogen treatments applied.
These same measurements all showed a clear nitrogen and water stress interaction.¶ Thus water treatment labels

for each class were identified as W4 for the darkest spectral reflectance in the 486, 560, and 685 rim range and W1for the lightest reflectance in that same range.

To identify the water treatment levels, we matched the mean spectral reflectance measurements of each column
in Table 3 for the original and MSR processed images shown in Figure 3 with the mean spectral reflectance for eachclass shown in Table 2. From this analysis we were able

column matched the correct mean spectral reflectance for to conclude that the mean spectral reflectance for each

each class. Although the magnitude of the results may
be different for other tillage types, the results presented here should prove useful for determining the amount of
information that can be expected from Particular agronomic variable interactions for given atmospheric conditions.

IThis merits a re-examination of the data, which is the subject for another paper.



6. CONCLUSIONS

Spectral signatures alone do not provide adequate classification of a scene, especially if the atmospheric or lighting
effects have severely affected the multi-image components. 1 This is evident if we compare the classification results

before and after MSR preprocessing. Without additional ground truth, or results from other classification studies,

it is difficult to state with any confidence whether the classifications obtained with the preprocessed images are

"better" in some absolute sense than the classifications obtained from the original images. We can state, however,

that the classifications from the MSR preprocessed images for the two different lighting and atmospheric conditions

are remarkably "similar" both visually, and in terms of the mean spectral reflectance of a class. We speculate that this

occurs because the MSR preprocessing is minimizing the effects of the atmospheric conditions on the multi-spectral
image, leading to consistent classifications from consistent data.

To summarize, we conclude that conventional unsupervised classification can be applied to this significant problem

of detection and discrimination of stressed and unstressed vegetation. Although classification results from both the

original and the MSR preprocessed images are encouraging, the MSR preprocessed images are more robust to

changes in atmospheric and lighting conditions. We need to conduct additional experiments to test the validity of

our speculation that MSR preprocessed multi-image classification is more robust in the presence of atmospheric and

lighting changes. In addition, we need to substantiate our conjecture that other image enhancement algorithms do

not have the same "beneficial" effect on the classifications. A color version of the figures in this paper is available at

http:/ /dragon.larc.nasa.gov /viplab/retinex/background/pubabs/spie3716-1999.htmh
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ABSTRACT

Image preprocessingisusefulin helpingto identify"spectralresponse patterns" for certaintypes of image classifi-

cationproblems. The common artifactsin remotely sensed images are caused by the blurringdue to the opticsof

the image gathering device,illuminationvariations,and the radiativetransferof the atmosphere. The Multi-Scale

Retinex (MSR) image enhancement algorithm that provides dynamic range compression, reduced dependence on

lightingconditions,and improved (perceived)spatialresolutionhas proven to be an effectivetool in the correc-

tion of image degradationssuch as those in remote sensingimages. In thispaper, we measure the improvement

in classification accuracy due to the application of the MSR algorithm. We use simulated images generated with

different scene irradiance and with known ground truth data. The simulation results show that, despite the degree

of image degradation due to changes in atmospheric irradiance, classification error can be substantially reduced by

preprocessing the image data with the MSR. Furthermore we show that, similar to the results achieved in previous

work, the classification results obtained from the MSR preprocessed images for various scene irradiance are more

similar to each other than are the classification results for the original unprocessed images. This is evident in the

observed visual quality of the MSR enhanced images even before classification is performed, and in the difference

images obtained by comparing image data under different irradiance conditions. We conclude that the application

of the MSR algorithm results in improved visual quality and increased spatial variation of multispectral images that

is also optimal for certain types of multispectral image classification.

Key-words: image classification, image enhancement, multispectral, retinex, dynamic range compression

I. INTRODUCTION

Various algorithmsforimage classificationusingremotely sensed imagery existin the literature.One way to charac-

terizethesealgorithms isby the characteristicsofthe multi-dimensionalspace in which they operate. For example,

many users of remotely sensed imagery utilizespectralsignaturesto characterizeand identify"materialsin multi-

dimensional "spectral"space.The spectralsignatureofa materialmay be definedin the solar-reflectiveregionofthe

electromagneticspectrum by itsreflectanceas a functionof wavelength, measured at an appropriatespectralreso-

lution.In other spectralregions,signaturesofinterestare temperature and emissivity(TIR) and surfaceroughness

(radar).The motivation for using remote sensed data formaterialidentificationisthat differenttypes of materials

exhibitdifferentspectralsignatures,I and so can be distinguishedon thisbasis.

There are fundamental problems with the spectralsignatureapproach that are well documented inthe literature.

One fundamental problem isthat allspectralsignaturesare unique to the sample and to the environment in which

they axeobtained. Further,the abilityto distinguishspectralsignaturesisoftencomplicated by the naturalvariability

of a material,the spectralquantizationof many remote-sensinginstruments,and the modulation of the signatures

by the atmosphere in the image formation process.I Therefore,there isno guarantee that the spectralsignatures

obtained by the remote sensingsystem willeitherbe similarto the ones obtained under a differentenvironment, or

exhibitmeasurably different,or even recognizablecharacteristics.

In recentyears,considerablequantitiesof ground-based (laboratory)data have been accumulated that describe

spectralreflectancecharacteristicsof severaltypes of soilsand vegetation. However, itis virtuallyimpossible to

duplicatenaturalreflectancevariationsunder laboratoryconditions.In addition,the spectralsignatureofvegetation

changes over the seasonal lifecycle of plants. Thus the comparison between natural reflectancesignaturesand

laboratoryproduced signaturesbecomes even more complicated.

Send correspondenceto B.T.:bdthornp_sandia.gov.Co-authors:Z.R.:zrahraan_cs.wm.edu;S.P.:park_cs.wm.edu
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Figure 1. System Model.

As an alternative to classification based on spectral signatures, the multi-dimensional spectral space can be

transformed into an application dependent "feature" space that may prove more useful for classification purposes.

For example, transformations such as multi-spectral ratios have been used to enhance reflectance differences between

types of soil and vegetation, and are used to form "vegetation indices" that aid in classification. Typically, soil and

other geological formations exhibit ratios near 1, while vegetation shows a ratio of 4 or more. Other transformations

such as scale space filtering have been applied to identify "fingerprints" of certain types of minerals using local points

of inflection to characterize absorption characteristics. The success of using these indices has been greatly affected

by the lack of suitable methods to account for atmospheric effects on the radiance measured by the remote sensing
device. 2

Figure 1 illustrates the major steps that relate the image acquisition to the image classification process. Regardless

of which feature classification method is to be used, the (raw) image data needs to be radiometrically calibrated before

it can be used for analysis. That is, the raw data must be converted from sensor DN values to surface reflectance

values. Radiometric calibration generally involves several steps: sensor calibration--calculation of gain and offset
coefficients that convert sensor DN values to at-sensor radiance values; atmospheric correction--converion of at-

sensor radiance values to surface radiance using atmospheric modeling and estimation correction techniques; and,

solar and topographic correction--conversion of surface radiance to surface reflectance by correcting for topographic

slope and aspect, solar spectral irradiance, solar path transmittance, and down-scattered "skylight" radiance. 1 In

addition, detailed information about atmospheric conditions at the time of data acquisition may be required but is

generally not available. Parametric atmospheric correction methods can also be used to compensate for atmospheric

conditions, but they also require some information about the atmospheric conditions at the time of data acquisition.

The success of multi-image classification in the analysis stage is, thus, dependent on the quality of these calibration
and correction methods.

In this paper, we approach multi-image classification differently. Instead of applying (parametric) atmospheric

correction methods to remote sensed imagery, we compensate for the atmospheric effects by applying the multi-scale

retinex (MSR) image enhancement algorithm to the multispectral data prior to classification. The dynamic range

compression and color constancy properties of the MSR aid in minimizing the effects of variations in illumination

conditions, and the sharpening compensates for the device blurring and atmospheric amplitude modulation.

2. IMAGE PREPROCESSING

There are many factors that contribute to degrade the acquired image. For example, the device signal-to-noise ratio

(SNR) and the blurring due to the point spread function (PSF) of its optics, and the quantization artifacts due to

the analog-to-digital converters are produced by the image acquisition device. In addition, platform perturbations,

atmospheric modulations, and sampling artifacts also degrade the acquired image. Most researchers agree that

geometric and radiometric artifacts are the most common cause of image degradations in remotely sensed imagery, s

With reference to Figure I image restoration is an attempt to make the restored image g be geometrically and

radiometrically as "close" as possible to the radiant energy characteristics of the original scene s. The closeness
is measured in some metric space, such as the minimum mean square error (MSRE) space, and the goal of the

restoration process is to minimize the MSRE between the restored image and the original scene. Although, generally

termed an image enhancement technique, the MSR has proven to be an effective technique for correcting image



Figure 2. 2-d Mondrian.

degradations due to the optical blurring of the image acquisition device, illumination variations, and atmospheric

modulation. Thus, the MSR can be used to "restore" the acquired data, without any prior knowledge about the
atmospheric conditions at the time of acquisition.

2.1. The Multi-scale Retinex

For all (x, y) pixels in the multi-spectral image G, the multi-scale retinex (MSR) 4"5 can be compactly written as

N

Fj(x,y) = Z Wn" {log[Gj(x,y)] -log[Gi(x ,y)* Hn(x,y)]}, j = 1,..., J (1)
r_:-i

where J represents the number of spectral bands, N is the number of spatial scales being used, and Wn are the

weighting factors for the scales, a-s The Hn(x, y) are the surround functions (convolution kernels) given by

Ha(x, y) =/n exp[-(x 2 + y2)/a2], (2)

where an are the spatial scale parameters that control the extent of the surround function and the In are selected

so that _ _ Hn(x,y) = 1. Smaller values of an provide more dynamic range compression, and larger values provide

more lightness/color rendition. Each of the expressions within the summation represents a single-scale retinex (SSR).

The MSR combines the dynamic range compression of the small scale retinex with the tonal rendition of the

large scale retinex to produce an output which encompasses both. The MSR reduces dependency on lighting con-

ditions/geometry caused by such conditions as obscured foregrounds, and poor lighting caused by atmospheric
conditions or defects in artificial illuminants.

3. SCENE GENERATION

In order to exactly measure the effectiveness of MSR preprocessing on multi-image classification, we use simulated

images with exactly known ground truth. The simulated images are created by combining known atmospheric

transmittance profiles with scenes with known mean spatial detail and surface reflectance. We use a simple modeP J
of the radiance field which has the following characteristics:

1. The scene is a two-dimensional Mondrian flat surface divided into patches of uniform reflectance.

2. The effective irradiance (or the atmospheric transmittance) I(x, y) varies slowly and smoothly across the entire
scene, and

3. The reflected radiance field L(x, y) is everywhere independent of the viewer's position.

These assumptions permit us to express the radiance field L(x, y) by the simple relationship

1

L(x,y) = -_p(x,y)I(x,y), (3)
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Figure 3. Scene generation system model.

where p(x,y) is the Lambertian surface reflectance. The target scene with reflectance p(x,y) is represented by the

two-dimensional (2-d) Mondrian illustrated in Figure 2. This scene consists of random polygons whose boundaries axe
Poisson distributed and whose reflectances are distributed according to independent zero-mean Gaussian statistics.

The scene used in the simulation has 256 x 256 pixels. The reference spectra (See Section 3.1) were subsampled

at every 0.05pro to produce ideal spectra of 42 points. This results in a multi-image with of 256 x 256 x 42 values.

Figure 3 illustrates the process by which the 42 band real multi-image is generated. The multi-image is generated

by assigning each spatial location in the Mondrian a number corresponding to a specific reference spectra that

corresponds to the identification number for a vegetation type.

The atmospheric transmittance function is simulated by significantly blurring a generated Mondrian image. In

addition to providing regions of different transmission characteristics, this also simulates the umbra and penumbra

profiles of shadows. Two instances of the atmospheric transmittance profile axe shown in Figure 4: the dark regions

represent absorption in the atmosphere, or clouds; and the light regions represent transmittance, or absence of clouds.

The first profile, atransl, has two moderately sized regions of low transmittance (< 30%) at the lower left and right

corners of the image. For the majority of the scene the transmittance is about 45%, with some higher transmittance

areas located at the bottom center portion of the image which have a transmittance of about 80%. The second

profile, atrans2, has on average a transmittance of about 65%. As shown in Figure 3, after the ideal scene image m

and atmospheric transmittance profile m t have been generated, the simulated multi-image g is obtained by doing a

pixet by pixel multiplication of m t and m,

g(x,y) = m(x,y), m'(x,y)

Finally, the real image g is processed with the MSR algorithm to create the processed image f.

In order to analyze the data, fidelity metrics are computed for the ideal, real, and the MSR processed images.

Because we have "ground truth" data, these fidelity metrics can be applied and the results compared to the ground

truth. The fidelity analysis is based on two metrics that measure the accuracy and consistency of the results as they

axe affected by the application of the two atmospheric transmittance profiles. A mean squared-error metric is used

to measure the similarity between the two original images, and the similarity between the two real retinex images

for each atmospheric transmittance profile. A sensitivity metric is used to measure classification consistency and



Figure 4. TransmittanceModels.

accuracyfortherealoriginalandrealMSRprocessedimagesusingtherealgroundtruthandtheMSR grOund truth

as the basis of comparison.

3.1. Agronomic Data

Infrared Imaging Spectrometer) dataset for
The reference spectra used to create the idea/ Mondrian scene were taken from an AVIRIS (Airborne Visual and

representative species of vegetation are used the San Luis Valley in Co]orado._O Reference spectra plots for 9

in the scene (Figure 5), of which 8 are used in this experiment. The
study used farmland reference spectra representing potatoes, alfalfa, barley, oat hay, canola, and open fields containing
chic°-_° Based on the analysis provided by the USGS study by Clark et al,10 the alfalfa, canola, oat hay, and nugget

potato spectra showed the plants to be green and healthy. The barley had lost all of its chlorophyll signature. The
norkotah potatoes were not being irrigated as they were about to be harvested, and consequently Showed weak

chlorophyll and cellulose absorptions, with soil (clay) absorptions from exposed soil. These potatoes were also being
sprayed with a defoliant, so they showed decreased chlorophyll absorption, and a shift of the red edge of the absorption

spectrum to Shorter wavelengths. The chico and Pasture spectra showed combinations of chlorophyll and cellulose
(dry vegetation) absorptions. There was rain in the valley in the few days before the data acquisition flight so the

chico and Pasture did not show much water deprivation stress--being native plants they are hardy and can also

withstand more reduced precipitation COmpared to the crops. The bare field calibration spectrum is from a sample
measured on a laboratory spectrometer; all others are averages of several spectra extracted from the AVIRIS data.3.2. MSR Preprocessing

Figures 6 and 7 show RGS and linear contrast stretched (LCS) COmposites of the real original and MSR processed

scene. In Figure 6(1), the original scene has a reflectance of at most 60, thus making it difficult to compare it to the
MSR processed image of Figure 6(1). HOWever, in the LCS versions of the images we are able to compare features in

both images. The most striking observation between the two images is that the MSR enhances details between class
borders and within the class regions so that the sharpness of features in the image distinguishes it over that of the

original image. We do note the appearance of edge artifacts within the borders of the regions for the MSR image.
These edge artifacts are caused by Mach band undershoots and overshoots displayed as dark boundaries around the

border of certain regions. 1

4. DISCUSSION

Figure 8 shows the real original and MSR images created with the two atmospheric transmittance profiles shown in

Figures 4a and 4b. The original images have been linearly stretched so that subtle differences between them and

the MSR image can be COmpared. Recall that atransl (Figure 4(I)) has an average transmittance of about 45_0,
and atrans2 (Figure 4(r)) an average transmittance of 65%. Comparing the effects of the transmittance profiles on
.the original and MSR images, it is evident that the MSR images appear visually consistent for both the models.

However, the original images show the effects of the transmittance models as various dark reflectance areas in the

zmages. For instance, the affect of the low transmittance areas is easily seen in the bottom left and right portion of
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Figure 5. Reference spectra of vegetation and soil types. (Source: USGS Speclab. 1°)

Figure 0. real 2-d Mondrian scene: (1) original (r) linear contrast stretched version.

Figure 7. real 2-d Mondrian scene: (l) MSR processed (r) linear contrast stretched version.
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Figure 8. Effect of atmospheric models on original and MSR processed images.

the original atransl image. Very bright areas of reflectance in the original atrans2 image are also discernible in areas

where the transmittance was the highest. In the MSR atransl image there is some slight darkening of reflectance

in the lower left corner of the processed image, however, overall the MSR images are more similar to each other

than are the unprocessed images. We also observe that the boundaries between regions in the MSR images are more

clear and are in greater detail than the original. The previously identified edge artifacts are, however, evident at the

transition between dark and bright areas in the processed images.

5. CLASSIFICATION

We used vector quantization (VQ) to perform unsupervised classification on the multi-spectral image. The only user

specified parameter is the number of classes K. For classification, a 9 band subset of features were chosen from the

original 42 band image.

To cluster the images we used VQ along with a splitting method to define the spectral signatures. 12 The splitting

algorithm used to generate the trained codebook, splits each training set codebook vector using the best perturbation
factor for that dataset. The preferred perturbation factor is the one that generates the smallest MSE for the input

training set. The algorithm is designed to produce cluster means for a specific codebook size. As is the case for most
classification methods, the performance depends on the quality of the set of spectral means used to discriminate

classes in the image. For this analysis, we did not focus on methods to obtain spectral means, but compared the

relative accuracy of the spectral means obtained by the VQ to signatures derived from the training areas

Because we have a ground truth map of our ideal classification, the training set will be selected from regions

in the image shown in Figure 2. The training set vectors were input into the splitting algorithm and the trained

codebook vectors were generated. In the testing stage, the images were classified with the trained codebook vectors,

using a MSE VQ clustering algorithm. The resulting test codebook vectors were used as candidate spectral means

to identify each vegetation species.



Figure 9. Classificationresults for original and MSR -- Atmospheric Models Applied.

Figure 10. Classification results for original and MSR -- No Atmospheric Models Applied.

Figure 9 shows the classification results for the original and MSR images for the two transmittance profiles. The
classification results for the MSR processed images are more consistent with each other than the results obtained

with the original images. However, there were problems separating certain class pairs such as pasture (c) and potato

(nh), and barley and bare field. The pasture (c) spectra is not identified in the atrans 2 model image for the original.

Both the original and the MSR processed atrans 1 images have classification errors resulting from the affect of the

low transmittance area in the lower left portion of the images.

Tables 1 and 2 show the classification sensitivity results for the original and MSR image for different ground

truth images. The original and MSR ground truth images refer to the images shown in Figure 10. The sensitivity
measurements are listed in terms of the percentage of pixels correctly classified and the actual number of pixels

correctly classified out of the total 65536 (256 x 256) pixels that belong to the classified image. As can be seen in

Table 1, the MSR processed image for the atransl transmittance profile provided better classification sensitivity.

When used with the real original ground truth image, the MSR produced sensitivity results slightly better, 2.5_0,



thanthoseproducedby usingthe original atransl data. However original image for the atrans 1 model. However,

when the MSR processed original data was used for training, the classification accuracy for the MSR processed image

was substantially better, _ 15%, than the original. An even greater separation in results is seen between the original

and MSR images for the atrans2 transmittance profile. When the MSR processed data is used for training, the MSR

classified image is approximately 23% better than the original classification. Even when the original unprocessed

data is used for training, the MSR classification is about 10% better.

Table 1. Sensitivity (4# pixels out of 65536)

Ground Truth Image Model 1

% correct # pixels correct

Real Original Original 57.56 37722

Real Original MSR 60.99 39970
Real MSR MSR 70.63 46288

Table 2. Sensitivity (# pixels out of 65536)

Ground Truth Image Model 2

Real Original

Real Original
Real MSR

Original
MSR

MSR

% correct

54.32

74.34

86.86

# pixels correct
35599

48719

56924

Figure 11 shows an RGB composite of the quantized images. The original images have been linearly stretched so

that subtle differences between them and the MSR image can be compared. Comparing the effects of the atmospheric

models on the original and MSR images, we see that the MSR images appear visually consistent between both models

which is consistent with the results obtained using the 42 band multispectral image results discussed earlier in this

experiment. However, the effects of the transmittance models on the original images is more apparent in these

quantized images. The low transmittance areas axe sharply contrasted with the high transmittance regions. In the

MSR atransl image we do observe the same darkening of reflectance in the lower left corner of the image which

corresponds to the same low transmittance in the atransl model in the same area. We observe the same edge

artifacts effects around the borders of regions in the MSR quantized images as seen in the 42 band MSR image. For

this experiment, the advantage of generating classification and quantized images simultaneously is that the classified

image may provide an indication of how closely the quantized image will match the original data.

In Figure 13 we illustrate the results of using the squared-error difference metric to compare the original and

MSR images for each atmospheric transmittance model. We conclude from the difference images that the consistency
observation between the MSR images for the difference transmittance models is again confirmed. These results axe

similar to the results shown in Figure 12. However, we observe more high difference regions in Figure 13 for the

original image, than in Figure 12.

6. CONCLUSIONS

Although image enhancement is typically applied to improve the visual quality of multispectral images, in this ex-

periment we have given quantitative evidence that the application of the MSR algorithm restores images that are

degraded by atmospheric transmittance effects, and improves the results of multispectral image classification. Be-

cause the MSR algorithm was applied before clustering, the classification algorithm generated candidate spectra that

were better separated in reflectance for the MSR images than the spectra generated for the original images. Further-

more, the MSR candidate spectra maintained separability and high reflectance values regardless of the atmospheric

transmittance models applied. This leads us to conclude that the application of the MSR algorithm produces (ap-

proximately) illuminant invariant spectral signature images. Except for class regions in which edge artifacts produced
incorrect classifications around region boundaries, the classification results and the difference measurement results

show a consistency between MSR images that is not evident in the classifications based on the original images.
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Figure 11. Effect of atmospheric models on VQ original and MSR images.

Figure 12. Difference images for the (1) original and (r) MSR images.



Figure 13. VQ Difference images for the (1) original and (r) MSR images.
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